Cryptography Made Easy

Stuart Reges
Senior Lecturer
Why Study Cryptography?

• Secrets are intrinsically interesting
• So much real-life drama:
 – Mary Queen of Scots executed for treason
 – primary evidence was an encoded letter
 – they tricked the conspirators with a forgery
• Students enjoy puzzles
• Real world application of mathematics
Start with an Algorithm

• The Spartans used a scytale in the fifth century BC (transposition cipher)
• Card trick
• Caesar cipher (substitution cipher):

 ABCDEFGHIJKLMNOPQRSTUVWXYZ
 GHIJKLMNOPQRSTUVWXYZABCDEF
 GHIJKLMNOPQRSTUVWXYZABCDEF
Then add a secret key

- Both parties know that the secret word is "victory":

 ABCDEFGHIJKLMNOPQRSTUVWXYZ
 VICTORYABDEFGHJKLMNPQRSTUVWXZ

- "state of the art" for hundreds of years
- Gave birth to cryptanalysis first in the Muslim world, later in Europe
Cryptographers vs Cryptanalysts

• A battle that continues today
• Cryptographers try to devise more clever algorithms and keys
• Cryptanalysts search for vulnerabilities
• Early cryptanalysts were linguists:
 – frequency analysis
 – properties of letters
Vigenère Square (polyalphabetic)

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A
C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B
D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C
E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D
F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E
G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F
H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G
I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H
J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I
K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J
L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K
M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L
N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M
O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N
P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P
R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q
T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S
U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T
V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U
W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V
X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W
Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y

The Vigenère Square is a polyalphabetic substitution cipher that uses a repeating keyword to shift the alphabet. Each row and column represents a different Caesar cipher, and the intersection of the row and column is the encrypted letter.
Vigenère Cipher

- More secure than simple substitution
- Confederate cipher disk shown (replica)
- Based on a secret keyword or phrase
- Broken by Charles Babbage
Cipher Machines: Enigma

- Germans thought it was unbreakable
- Highly complex
 - plugboard to swap arbitrary letters
 - multiple scrambler disks
 - reflector for symmetry
- Broken by the British in WW II (Alan Turing)
Public Key Encryption

- Proposed by Diffie, Hellman, Merkle
- First big idea: use a function that cannot be reversed (humpty dumpty)
- Second big idea: use asymmetric keys (sender and receiver use different keys)
- Key benefit: doesn't require the sharing of a secret key
RSA Encryption

-Named for Ron Rivest, Adi Shamir, and Leonard Adleman
-Invented in 1977, still the premier approach
-Based on Fermat’s Little Theorem:
 \[a^{p-1} \equiv 1 \pmod{p} \text{ for prime } p, \gcd(a, p) = 1 \]
- Slight variation:
 \[a^{(p-1)(q-1)} \equiv 1 \pmod{pq} \text{ for distinct primes } p \text{ and } q, \gcd(a,pq) = 1 \]
-Requires large primes (100+ digit primes)
Example of RSA

- Pick two primes p and q, compute $n = p \times q$
- Pick two numbers e and d, such that:
 $$e \times d = k(p-1)(q-1) + 1$$ (for some k)
- Publish n and e (public key), encode with:
 $$(\text{original message})^e \mod n$$
- Keep d, p and q secret (private key), decode with:
 $$(\text{encoded message})^d \mod n$$
Why does it work?

- Original message is carried to the e power, then to the d power:
 \[(msg^e)^d = msg^{e \cdot d}\]

- Remember how we picked e and d:
 \[msg^{ed} = msg^{k(p-1)(q-1) + 1}\]

- Apply some simple algebra:
 \[msg^{ed} = (msg^{(p-1)(q-1)})^k \times msg^1\]

- Applying Fermat's Little Theorem:
 \[msg^{ed} = (1)^k \times msg^1 = msg\]
Politics of Cryptography

- British actually discovered RSA first but kept it secret
- Phil Zimmerman tried to bring cryptography to the masses with PGP and ended up being investigated as an arms dealer by the FBI and a grand jury
- The NSA hires more mathematicians than any other organization
Exploring further

- Simon Singh, *The Code Book*
- RSA Factoring Challenge (unfortunately the prizes have been withdrawn)
- Shor's algorithm would break RSA if only we had a quantum computer
- Java's BigInteger class has methods for isProbablePrime, nextProbablePrime, modPow
Card Trick Solution

- Given 5 cards, at least 2 will be of the same suit (pigeon hole principle)
- Pick 2 such cards: one will be hidden, the other will be the first card
- First card tells you the suit
- Hide the card that has a rank that is no more than 6 higher than the other (using modular wrap-around of king to ace)
- Arrange other cards to encode 1 through 6
Encoding 1 through 6

• Figure out the low, middle, and high cards
 – rank (ace < 2 < 3 ... < 10 < jack < queen < king)
 – if ranks are the same, use the name of the suit
 (clubs < diamonds < hearts < spades)
• Some rule for the 6 arrangements, as in:
 1: low/mid/hi 3: mid/low/hi 5: hi/low/mid
 2: low/hi/mid 4: mid/hi/low 6: hi/mid/low