Creative Programming in Scratch

CS4HS 2011

Hélène Martin

http://garfieldcs.com/static/2011cs4hsScratch
You might be wondering...

• Why is programming worth teaching?
• What kind of learning can Scratch support?
• What kinds of projects help students develop critical thinking skills?
• How can Scratch projects be assessed?
• How can Scratch support your course goals?
Programming?

• “Telling the computer what to do”
• Writing, testing and maintaining source code
• Creating original digital artifacts

• Rule–based, detail–oriented
• Empowering!
Why teach programming?

• Increase problem-solving abilities
 – Algorithmic thinking
 – What computers can/can’t do

• Reinforce learning from core subjects
 – Algebra
 – Geometry
 – Scientific method

• It’s concrete
Scratch: visual programming

- http://scratch.mit.edu
Why Scratch?

- No syntax learning-curve
- Build intuitions about computing concepts relevant to most languages
- Immediate feedback
- Great social networking component
- It’s good enough for Harvard and Berkeley
Warning!

- It’s not algebraic
- Major concepts are missing - abstraction
 - See Snap (what Berkeley uses)
- Easy to slip into entirely unstructured play
 - Repetitive code
 - Lack of transfer
Check it out

• Try out different projects on http://scratch.mit.edu/channel/featured (second link from workshop website)

• Look for projects relevant to your subject area
Scripts

- Formalized algorithms
- Combination of blocks
- Attached to sprites or the stage
- Blocks only fit where syntactically correct
Statements

• Commands or instructions
• Simple statements are verbs
Repetition

- Loops are used to repeat a piece of code
 - Iteration is critical in CS but also math, science
Visuals

- Sprites have costumes
- The stage has backgrounds
Conditionals

• Not all statements should be run all the time

• Boolean expressions define conditions
 – Evaluate to true or false
Bouncing ball on beach
Variables

- Placeholders for values
- Named by the user
- Your turn: resizable polygon
Rubric: Resizable polygon

- __/2 – has a size variable
- __/2 – has a sides variable
- __/2 – changing variables has desired effect
- __/1 – has a creative background
- __/2 – variable sliders on stage for user to set
- __/1 – clicking on green flag starts program
Threads

• ADVANCED programming topic
• Coordination of multiple things going on at once
• Any block beginning with ‘When’ starts a thread
Events

• Signal from one thread to another
• Broadcast blocks send events
• Your turn: LeBron James buttons project
Lists

• A type of variable that contains multiple related values

• See writeup for graphing assignment
Practicing problem solving

• Understanding problem statements
• Decomposing problems into solvable pieces
• Incremental design

• **Sample problem**: The user can set gridHeight, gridWidth and gridMargin with sliders. The cat should draw a grid of size gridHeight by gridWidth, gridMargin away from the edge of the screen.
Breaking down the grid problem

• (Syntax) How can we get Cat to draw a horizontal line 30 from the top of the screen?

• (Geometry) How can we get Cat to draw 5 evenly spaced horizontal lines?

• (Syntax) What kind of loop should we use?

• (Algorithm) How many times will it repeat?

• (Algebra) What if we want a margin of 30 on top and bottom?
Writing: proposal

- Students write formal project proposals
- Teach technical writing
- Bring in industry guest to hear elevator pitches
Design: storyboarding

- Encourage students to plan before acting
- Help students develop storytelling abilities
- Introduce a real-world technique
Parting words

- Encourage students to be tech producers
- Allow “guided play”
- Teach meaningful critical thinking skills
- “Hide” important lessons in a playful environment
- Leverage existing materials