Teaching Computer Science from K through 12

Gary Kacmarcik
Google, Inc.
(garykac@google.com)

Sylvie Giral Kacmarcik
Whole Earth Montessori School, Bothell, WA
(french@wholeearthmontessori.org)
Motivation & Background

• “How can we best teach programming?”
 – Desire to teach our own kids, their friends, …

• Teaching experience
 – From University to pre-K
 – Teaching K-7 for past 6 years
 • Programming (5th – 8th) for past year

• Google K-12 intergrouplet
 – “bottom-up” self organized group; 20% time
Why does Google care?

• Low enrollment in Computer Science

• Low minority representation

• Concern about entire education pipeline:
 – High School → BS → MS/PhD
Filling the Pipeline

• Working backwards:
 – To graduate more MS/PhDs, you need more students entering the BS programs
 – To get more students entering the BS programs, you need to spark interest in HS

• Focusing on HS seems obvious

• But...
Problems with starting in HS

• Inconsistent skill set
 – Huge disparity between students
 • WRT computer literacy
 – Unlike Math, English, Science, ...

• Stereotypes already established
 – Peer pressure
 – “You’re not supposed to be interested in ...”
 – Typically happens around/before 8th grade
Finally! The Topic for this Talk

- High School is too late to be starting
 - (OK, it’s never *really* too late, but it would be much easier if we started earlier)

- HS should be nurturing and developing seeds that were planted earlier.

- We shouldn’t have to undo stereotypes
 - We should strive to avoid them in the first place
A Brief Diversion

• Before we talk about goals, a slight aside:
 – How does a phone work?
 – How does a toilet work?
 – How does a car work?
 • Internal combustion engine

• We can explain how these devices work in general, accessible terms
 – Concrete, physical explanation
A Brief Diversion (cont.)

• Now, how do computers work?

 – Many explanations go something like:
 • Mumbling something about ‘0’s and ‘1’s
 • Talk about memory, CPU, ALU

 – These aren’t wrong, but they aren’t concrete
 • Not accessible to many students
 • They don’t walk away with a real understanding
A Brief Diversion (cont.)

• “Any sufficiently advanced technology is indistinguishable from magic”
 – Arthur C. Clarke, 1973

• Kids are growing up in this magical world
 – That’s good and bad

• If we don’t give them the tools they need they won’t be able to contribute effectively
Goals for Teaching Computer Science in K-12

• Three goals:
 – Demystify computers for students in general
 – Encourage students to learn programming
 • Spark interest in computer science
 – Provide tools for parents/educators
Goals for Teaching Computer Science in K-12

• First two goals are related:
 – Introduce programming and demystify computers early enough so that:
 • We don’t have to fight social issues
 • We’re more likely to ignite that spark of interest

• Last goal can be broken into 2 sub-goals
 – Create ready-to-use materials
 – Formalize the teaching of computer skills
 • What students should know at each grade level
What / When to teach

• What we can/should teach in HS depends on what we’ve taught in earlier grades

• What set of skills do you wish your HS students already had?

• How early can we teach these skills?
When to introduce programming

• We should start teaching programming:
 – After the ability to think abstractly
 – Before stereotypes/societal influences

• Roughly between 6th to 8th grade
 – Some students are ready in 5th grade

• Note: We don’t expect students to master programming at this age
 – Introduce, gain confidence, spark interest
Case Study

• Teaching programming to 5th-8th graders:
 – Using a computer engineering approach
 – Work from bottom-up
 • Start with electricity, work up to programming
 – Class running for over a year
 • At a local Montessori school (Bothell, WA)
 – Each student has a project
 • Create a Gameboy Advance (GBA) game
Case Study

• Class goals:
 – Teach how computers work
 • Demystify the inner workings
 – Teach programming
 • Learn that the programmer is in control
 – Teach project management
 • Break complex ideas down into subtasks

• Stretch goal:
 – Get students to program outside of class
General Overview of Class

- Number systems: binary, hexadecimal
- Electricity, voltage
- Transistors, gates
- Boolean logic
- Hardware: LEDs, 4000-series CMOS
- Memory, address decoders
- Storing things in memory (images, text)
- CPU: registers, instructions
- Programming:
 - Compiler, handling errors
 - Variables, control flow, ...
 - Programming tasks/tutorials
Why GBA Programming

• Use games to introduce programming
 – Motivation is key to learning to program
 – GBA programming motivates from K through University

• Real programming language: C/C++

• Students can create entire project
 – 2-D project
 – Easily create their own art assets: http://code.google.com/p/spritely
 – Ownership of the project; sense of accomplishment

• Easier to make link down to hardware
 – No operating system, virtual machine
 – Can link from transistors, memory, CPU, assembly language to the students program
Alternate approaches

• Alice (CMU - Free)
 – E.g., program the movement of an ice skater
 – Make a short movie, tell a short story

• KPL (now Phrogram - $)
 – “Kids Programming Language”

• and others...
Contrasts with our approach

• These other approaches typically:
 – Run in a limited “sandbox” environment
 – Very object-oriented
 – Focus on drag-n-drop instead of typing
 • Avoids problems with typos and syntax errors
 – Use pre-generated graphics
 • Don’t have to create their own art assets
 • Can use professionally-made graphics

• and sometimes:
 – Provide a 3-D virtual world
Which approach is “better”?

- They each have pros/cons
 - Students will prefer one over the other

- Our approach is motivated by a desire to:
 - Connect programming & hardware
 - Give a real world programming experience

- But it suffers from:
 - Requiring text programming/compiling
 - More limited debugging facilities

- We’re trying to build a strong foundation
 - Expect students to take other programming classes
 - Java, C#, C++, …
General Comments on Class

• Disparity in computer skill set
 – Small, but noticeable even at this age

• Many of these skills can be taught earlier
 – E.g., number systems, boolean logic

• Most of the steps before programming can be made concrete
 – But time must be spent creating materials
When to introduce programming

• Previously, we said between 6-8th grade

• But we can lay the foundations earlier:
 – General computer skills (\leq K)
 – Boolean logic & flow charts (2nd)
 – Alternate number systems (3rd-4th)
 – Electricity/Transistors (4th-5th)
Summary

• Need to introduce programming before HS
 – Around 6-8 grade

• Need to introduce computer skills
 – Throughout Elementary School
 – Basic skills and pre-programming skills

• Need guidelines for what to teach
 – Identify skills for each grade level
What about High School?

• Materials for Middle School can be used

• HS students can teach MS students
 – In Montessori environment, common for older students to teach younger ones
 – Caution: Don’t introduce stereotypes!
 • “Girls computer class” may be OK in HS
 – But it’s not OK in MS
 • Important to have mixed classes at this age to break down stereotypes
Google K-12 Teacher Focus Group

• Invite middle and high-school teachers
 – Review early progress of material development
 – Provide comments/feedback
 – Discuss requirements

• Tentatively scheduled for 21 August 2008
 – Location: Google’s Fremont office
 – Limited space

• Contact us if you’d like to be involved
 – Gary Kacmarcik (garykac@google.com)
 – Jessica Einfeld (jessicae@google.com)